Dr. Juan José Vilatela

Dr. Juan J. Vilatela has a BSc in Physics Engineering from UIA, Mexico (2005) and a PhD from the Department of Materials Science and Metallurgy of the University of Cambridge (2009). In 2011 he founded the Multifunctional Nanocomposites Group at IMDEA Materials Institute. He has been awarded the “Juan de la Cierva” and “Ramón y Cajal” fellowships by the Spanish Ministry of Economics and the 2016 Young Investigator Award by the European Society for Composite Materials. His group’s work is largely focused on the development of macroscopic materials made up of nanobuilding blocks in a way that the unique properties at the nanoscale are preserved through the assembly process and a new generation of high-performance engineering materials is produced. He was involved in early developments of a process to make continuous macroscopic fibres made up of CNTs, at Cambridge. Later he took part in the transfer of this technology to industry. His current scientific interest lies in multifunctional nanostructured composite materials, produced by controlled assembly from the nano to the macroscale. The possibility of hierarchical tailoring of their structure gives nanocomposites combinations of properties (e.g. mechanical, electronic), often superior to those of conventional materials, and makes them suitable for a wide variety of applications in energy management. Dr. Vilatela has experience working with carbon nanotubes, CNx, graphene and inorganic nanostructures (e.g. TiO2, ZnO, Ta2O5), as well as thermoset, elastomeric and thermoplastic matrices. He is interested in the synthesis of hybrid macroscopic materials by combination of these nanobuilding blocks and in the use of WAXS/SAXS, Raman and impedance spectroscopy to characterize their complex hierarchical structure and interfacial load/charge transfer processes. He is the author of around 40 papers (> 900 citations), 6 patents (2 industrially exploited) and has an h-index of 13. He has coordinated several European projects, industrial contracts (e.g. Airbus) and is currently the recipient of an ERC Starting Grant to develop structural energy harvesting composite materials. Since 2014 his is an associate lecturer at the Carlos III de Madrid University.


Academic Career
  • Since 2011 Head of Multifunctional Nanocomposites group at IMDEA Materials Institute, Spain.
  • 2009-2011 Postdoctoral research associate, University of Cambridge, UK.
  • 2005-2009 PhD, University of Cambridge, UK.
  • 2004-2005 Research laboratory manager, Advanced Additives Laboratory, Jumex, Mexico
  • 2004 Research internship with Prof. P. Ajayan, Department of Materials Science, Rensselaer Polytechnic Institute, US. (3 months)
  • 2003 Research internship with Prof. M. Terrones, Department of Materials Science, IPICYT, Mexico. (3 months)
  1. “A Perspective on High-performance CNT fibres for Structural Composites” Anastassia Mikhalchan and Juan José Vilatela, Carbon, 2019, DOI:10.1016/j.carbon.2019.04.113.
  2. “Molecular characterization of macroscopic aerogels of single-walled carbon nanotubes” B. Alemán and J.J. Vilatela. Carbon 2019 149, 512-518 . DOI:doi.org/10.1016/j.carbon.2019.04.061
  3. “Pore structure and electrochemical properties of CNT-based electrodes studied by in-situ small/wide angle X-ray scattering” C. Santos, E. Senokos, J.C. Fernández-Toribio, A. Ridruejo, R. Marcilla and J.J. Vilatela. J. Mater. Chem. A, 7, 5305-5314, 2019. DOI:doi.org/10.1039/C9TA01112A
  4. “Understanding the enhancement of Young’s modulus of macroscopic carbon nanotube fibers after polymer infiltration” Bartolomé Mas, Alfonso Monreal-Bernal, Hangbo Yue, Haiquin Zhang, Juan J. Vilatela. AIP Conference Proceedings 2055(1) 090008, 2019. DOI:doi.org/10.1063/1.5084886
  5. “Interfacially-grafted single wall carbon nanotube / poly (vinyl alcohol) composite fibers” Won Jun Lee, Adam J. Clancy, Juan C. Fernández-Toribio, David B. Anthony, Edward R. White, Eduardo Solano, Hannah S. Leese, Juan J. Vilatela, Milo S.P. Shaffer. Carbon 146(162-171), 2019. DOI:doi.org/10.1016/j.carbon.2019.01.075
  6. “Controlled electrochemical functionalization of CNT fibers: Structure-chemistry relations and application in current collector-free all-solid supercapacitors” E. Senokos, M. Rana, C. Santos, R. Marcilla and Juan J. Vilatela. Carbon 142(599-609), 2018. DOI:doi.org/10.1016/j.carbon.2018.10.082
  7. “CNT fibres as dual counter-electrode/current-collector in highly efficient and stable dye-sensitized solar cells” Alfonso Monreal-Bernal, Juan José Vilatela and Rubén D. Costa. Carbon 141(488-496), 2018. DOI:doi.org/10.1016/j.carbon.2018.09.090
  8. “Surface Chemistry Analysis of Carbon Nanotube Fibers by X‐Ray Photoelectron Spectroscopy” B. Alemán, M. Vila and J. J. Vilatela. Phys. Status Solidi A 215(19), 2018. DOI:doi.org/10.1002/pssa.201800187
  9. “Doping of Self-Standing CNT Fibers: Promising Flexible Air-Cathodes for High-Energy-Density Structural Zn–Air Batteries” A. Pendashteh , J. Palma, M. Anderson, J. J. Vilatela and R. Marcilla ACS Applied Energy Materials , 2018, 1 (6), 2434–2439. DOI: 10.1021/acsaem.8b00583
  10. “Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization” C. Santos, J. J. Lado, E. García-Quismondo, I. V. Rodríguez, D. Hospital-Benito, J. Palma, M. A. Anderson and Juan J. Vilatela Journal of Materials Chemistry A , 2018, 6, 10898-10908. DOI: 10.1039/c8ta01128a
  11. “A Hybrid Molecular Photoanode for Efficient Light Induced Water Oxidation” S. Grau, S. Berardi, A. Moya, R. Matheu, V. Cristino, J. Vilatela, C A Bignozzi, S. Caramori, C. Gimbert Suriñach and A. Llobet Sustainable Energy Fuels , Just Accepted, 2018. DOI: 10.1039/C8SE00146D
  12. “Tensile properties of carbon nanotube fibres described by the fibrillar crystallite model” J.C. Fernández-Toribio, B. Alemán, A. Ridruejo and J.J. Vilatela Carbon 133 , 44-52, 2018. DOI: 10.1016/j.carbon.2018.03.006
  13. “Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves” E. Senokos, Y. Ou, J.J. Torres, F. Sket, C. González, R. Marcilla and J.J. Vilatela Scientific Reports 8(1) , 3407, 2018. DOI: 10.1038/s41598-018-21829-5
  14. “Enhanced electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber Based Cathode” T. X. H. Le, B. Alemán, J. J. Vilatela, M. Bechelany and M. Cretin Frontiers in Materials 5(9) , 2018. DOI: 10.3389/fmats.2018.00009
  15. “Large Area Schottky Junctions between ZnO and CNT Fibres” A. Monreal-Bernal and J.J. Vilatela ChemPlusChem 83(2), 2018. DOI: 10.1002/cplu.201700522
  16. “Gas-phase functionalization of macroscopic carbon nanotube fiber assemblies: reaction control, electrochemical properties, and use for flexible supercapacitors” D. Iglesias, E. Senokos, B. Aleman, L. Cabana, C. Navio, R. Marcilla, M. Prato, J. J. Vilatela, and S. Marchesan ACS Applied Materials & Interfaces 10 (6), 5760-5770, 2018. DOI: 10.1021/acsami.7b15973
  17. “Large area photoelectrodes based on hybrids of CNT fibres and ALD–grown TiO2” A. Moya, N. Kemnade, M. R. Osorio, A. Cherevan, D. Granados, D. Eder, J.J. Vilatela Journal of Materials Chemistry A 5(47), 24695-24706, 2017. DOI: 10.1039/C7TA08074C
  18. “Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors” A. Pendashteh, E. Senokos, J. Palma, M. Anderson, J.J. Vilatela and R. Marcilla Journal of Power Sources 372, 64-73, 2017. DOI: 10.1016/j.jpowsour.2017.10.068
  19. “Fractal carbon nanotube fibers with mesoporous crystalline structure” H. Yue, V. Reguero, E. Senokos, A. Monreal-Bernal, B. Mas, J.P. Fernández-Blázquez, R. Marcilla, J.J. Vilatela Carbon 122, 47-53, 2017. DOI: 10.1016/j.carbon.2017.06.032
  20. “Carbon nanotube fibers with martensite and austenite Fe residual catalyst: room temperature ferromagnetism and implications for CVD growth” B. Alemán, R. Ranchal, V. Reguero, B. Mas, J.J. Vilatela Journal of Materials Chemistry C 5(22), 5544-5550, 2017. DOI: 10.1039/C7TC01199G
  21. “Structural composites for multifunctional applications: Current challenges and Future trends” C. González , J.J. Vilatela, J.M. Molina-Aldareguía, C.S. Lopes, J. LLorca Progress in Materials Science 89, 194-251, 2017. DOI: 10.1016/j.pmatsci.2017.04.005
  22. Large-Area, All-Solid, and Flexible Electric Double Layer Capacitors Based on CNT Fiber Electrodes and Polymer Electrolytes” E. Senokos, V. Reguero, L. Cabana, J. Palma, R. Marcilla, J.J. Vilatela Advanced Materials Technologies 2(7), 1600290, 2017. DOI: 10.1002/admt.201600290
  23. Interfacial Charge Transfer in Functionalized Multi-walled Carbon Nanotube@TiO2 nanofibres” A. Saha, A. Moya, A. Kahnt, D. Iglesias, S. Marchesan, R. Wannemacher, M. Prato, J.J. Vilatela, D.M. Guldi Nanoscale 9(23), 7911-7921, 2017. DOI: 10.1039/C7NR00759K
  24. Highly responsive UV-photodetectors based on single electrospun TiO2 nanofibres” Aday Molina-Mendoza, Alicia Moya, Riccardo Frisenda, Simon A. Svatek, Patricia Gant, Sergio Gonzalez-Abad, Elisa Antolín, Nicolas Agrait, Gabino Rubio Bollinger, David Perez de Lara, Juan Vilatela and Andres Castellanos-Gomez Journal of Materials Chemistry C 4 (45), 10707-10714, 2016. DOI: 10.1039/C6TC02344D
  25. A Composite Fabrication Sensor Based on Electrochemical Doping of Carbon Nanotube Yarns” Fernández‐Toribio, Juan. C., Íñiguez‐Rábago, A., Vilà, J., González, C., Ridruejo, Á., & Vilatela, J. J. Advanced Functional Materials 26(39), 1616-3028, 2016. DOI: 10.1002/adfm.201602949
  26. Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers” A. López-Moreno, B. Nieto-Ortega, M. Moffa, A. de Juan, M.M. Bernal, J.P. Fernández-Blázquez, J. J. Vilatela, D. Pisignano, E. Pérez . ACS Nano 10(8), 8012–8018, 2016. DOI: 10.1021/acsnano.6b04028
  27. Hierarchical TiO2 nanofibres as photocatalyst for CO2 reduction: Influence of morphology and phase composition on catalytic activity” P. Reñones, A. Moya, F. Fresno, L. Collado, J. J. Vilatela, V. A. de la Peña . Journal of CO2 Utilization, 2016. DOI: 10.1016/j.jcou.2016.04.002
  28. Interfacial Crystallization of Isotactic Polypropylene Surrounding Macroscopic Carbon Nanotube and Graphene Fibers” J. P. Abdou, K. J. Reynolds, M. R. Pfau, J. van Staden, G. A. Braggin, N. Tajaddod, M. Minus, V. Reguero, J. J. Vilatela, S. Zhang. Polymer 91, 136-145, 2016. DOI: 10.1016/j.polymer.2016.03.055
  29. Group 16 elements control the synthesis of continuous fibers of carbon nanotubes” B. Mas, B. Alemán, I. Dopico, I. Martin-Bragado, T. Naranjo, E. M. Pérez and J. J. Vilatela. Carbon 101, 458-464, 2016. DOI: 10.1016/j.carbon.2016.02.005
  30. Inherent Predominance of High Chiral Angle Metallic Carbon Nanotubes in Continuous Fibers Grown From Molten Catalyst” B. Alemán, M. Mar Bernal, B. Mas, E. M. Perez, V. Reguero, G. Xu, Y. Cui and J. Vilatela. Nanoscale 8(7), 4236-4244, 2016. DOI: 10.1039/C5NR07455J
  31. Macroscopic Fibres of CNTs as Electrodes for Multifunctional Electric Double Layer Capacitors: from Quantum Capacitance to Device Performance” E. Senokos, V. Reguero, J. Palma, J. J. Vilatela and R. Marcilla. Nanoscale 8(6), 3620-3628, 2016. DOI: 10.1039/C5NR07697H
  32. Macroscopic CNT fibres inducing non-epitaxial nucleation and orientation of semicrystalline polymers” H. Yue, A. Monreal-Bernal, J. P. Fernández-Blázquez, J. Llorca and J. J. Vilatela. Scientific Reports 5, Article number: 16729, 2015. DOI: 10.1038/srep16729
  33. Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devicess” J. J. Vilatela and R. Marcilla. Chemistry of Materials 27(20), 6901–6917, 2015. DOI: 10.1021/acs.chemmater.5b02783
  34. Strong Carbon Nanotube Fibers by Drawing Inspiration From Polymer Fiber Spinning” B. Aleman, V. Reguero, B. Mas, and J. J. Vilatela. ACS Nano 9(7), 7392–7398, 2015. DOI: 10.1021/acsnano.5b02408
  35. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids” A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J. J. Vilatela. Appl. Catal. B Environ. 179, 574-582, 2015. DOI: 10.1016/j.apcatb.2015.05.052
  36. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks” J. J. Vilatela, M. E. Rabanal, F. Cervantes-Sodi, M. García-Ruiz, J. A. Jiménez-Rodríguez,G. Reiband, M. Terrones. Journal of Nanoscience and Nanotechnology 15(4), 2858-2864, 2015. DOI: 10.1166/jnn.2015.9601
  37. Antimicrobial metal–organic frameworks incorporated into electrospun fibers” J. Quirós, K. Boltes, S. Aguado, R. Guzman de Villoria, J. J. Vilatela, R. Rosal. Chemical Engineering Journal 262(15), 189-197, 2015. DOI: 10.1016/j.cej.2014.09.104
  38. Electric Field-Modulated Non-ohmic Behavior of Carbon Nanotube Fibers in Polar Liquids” J. Terrones, J. A. Elliott, J. J. Vilatela, A. H. Windle. ACS Nano 8(8), 8497–8504, 2014. DOI: 10.1021/nn5030835
  39. Controlling Carbon Nanotube Type in Macroscopic Fibers Synthesized by the Direct Spinning Process” V. Reguero, B. Alemán, B. Mas, J. J. Vilatela. Chemistry of Materials 26, 3550-3557, 2014. DOI: 10.1021/cm501187x
  40. Real time monitoring of click chemistry self-healing in polymer composites” H.-B. Yue, J. P. Fernández-Blázquez, D. F. Beneito, J. J. Vilatela. Journal of Materials Chemistry A 2, 3881-3887, 2014. DOI: 10.1039/C3TA14961G
  41. Liquid Infiltration into Carbon Nanotube Fibers: Effect on Structure and Electrical Properties” J. Qiu, J. Terrones, J. J. Vilatela, M. E. Vickers, J. A. Elliott, A.H. Windle. ACS Nano 7(10), 8412-8422, 2013. DOI: 10.1021/nn401337m
  42. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering” B. Mas, J. P. Fernández-Blázquez, J. Duval, H. Bunyan, J. J. Vilatela. Carbon 63, 523-529, 2013. DOI: 10.1016/j.carbon.2013.07.029
  43. A Multifunctional Yarn Made Of Carbon Nanotubes” J.J. Vilatela, A.H. Windle. Journal of Engineered Fibers and Fabrics 7, 23-28, 2012. DOI:
  44. Carbon nanotube bundles self-assembled in double helix microstructures” F. Cervantes-Sodi, J. J. Vilatela, J. A. Jiménez-Rodríguez, L. G. Reyes-Gutiérrez, S. Rosas-Meléndez, A. Íñiguez-Rábago, M. Ballesteros-Villarreal, E. Palacios, G. Reiband, M. Terrones. Carbon 50, 3688-3693, 2012. DOI: 10.1016/j.carbon.2012.03.042
  45. Selective synthesis of double hélices of carbon nanotube bundles grown on treated metallic substrates” F. Cervantes-Sodi, A. Íñiguez-Rábago, S. Rosas-Meléndez, M. Ballesteros-Villarreal, Juan J. Vilatela, L. G. Reyes-Gutiérrez, E. Palacios, M. Terrones, Jose A. Jiménez-Rodríguez. Phys. Status Solidi B 249, 2382-2385, 2012. DOI: 10.1002/pssb.201200116
  46. Nanocarbon Composites and Hybrids in Sustainability: A Review” J. J. Vilatela, D. Eder. ChemSusChem 5, 456-478, 2012. DOI: 10.1002/cssc.201100536
  47. The hierarchical structure and properties of multifunctional carbon nanotube fibre composites” J. J. Vilatela, R. Khare, A. H. Windle. Carbon 50, 1227-1234, 2012. DOI: 10.1016/j.carbon.2011.10.040
  48. Structure of and stress transfer in fibres spun from carbon nanotubes produced by chemical vapour deposition” J.J. Vilatela, L. Deng, I. Kinloch, R. Young and A.H. Windle. Carbon 49, 4149-4158, 2011. DOI: 10.1016/j.carbon.2011.05.045
  49. A Model for the Strength of Yarn-like Carbon Nanotube Fibers” J.J. Vilatela, J.A. Elliott, A.H. Windle. ACS Nano 5, 1921–1927, 2011. DOI: 10.1021/nn102925a
  50. The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects” F.M. Blighe, K. Young, J.J. Vilatela, A.H. Windle, I. A. Kinloch, L. Deng, R.J. Young, J.N. Coleman. Advanced Functional Materials 21, 364-371, 2011. DOI: 10.1002/adfm.201000940
  51. Tuning the Mechanical Properties of Composites from Elastomeric to Rigid Thermoplastic by Controlled Addition of Carbon Nanotubes” U. Khan, P. May, A. OŽNeill, J.J. Vilatela, A.H. Windle, J.N. Coleman. Small 7, 2011. DOI: 10.1002/smll.201001959
  52. Yarn-like Carbon Nanotube Fibers” J. J. Vilatela, A. H. Windle. Advanced Materials 22, 4959-4963, 2010. DOI: 10.1002/adma.201002131
  53. Strong Dependence of Mechanical Properties on Fiber Diameter for Polymer-Nanotube Composite Fibers: Differentiating Defect from Orientation Effects” K. Young, F. Blighe, J.J. Vilatela, A.H. Windle, I.A. Kinloch, L.B. Deng, R.J. Young, J.N. Coleman. ACS Nano 4, 6989-6997, 2010. DOI: 10.1021/nn102059c
  54. Properties of composites of carbon nanotube fibres” R.J. Mora, J.J. Vilatela, A.H. Windle. Composite Science and Technology 69, 1558-1563, 2009. DOI: 10.1016/j.compscitech.2008.11.038
  55. Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence” R. J. Davies, C. Riekel, K. K. Koziol, J. J. Vilatela and A. H. Windle. Journal of Applied Crystallography 42, 1122-1128, 2009. DOI: 10.1107/S0021889809036280
  56. Direct spinning of carbon nanotube fibres from liquid feedstock” K. Stano, K. Koziol, M. Pick, M.S. Motta, A. Moisala, J.J. Vilatela, S. Frasier, A.H. Windle. International Journal of Material Forming 1, 59-62, 2008. DOI: 10.1007/s12289-008-0380-x
  57. High-performance carbon nanotube fiber” K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle. Science 318(5858), 1892-1895, 2007. DOI: 10.1126/science.1147635
  • Multiscale Engineering of Carbon Nanotube Fibers” Chapter 6 in “Nanotube Superfiber Materials – 2nd Edition” Belén Alemán and Juan J. Vilatela. Elsevier, 2019.
  • Nanocarbon-based composites” Chapter 8 in “Nanocarbon-Inorganic Hybrids: Next Generation Composites for Sustainable Energy Applications” J. Vilatela, de Gruyter, 2014.
Conference Proceedings
  • A piezoresistive sensor based on carbon nanotube yarns” S. Frutos, J. C. Fernández-Toribio, B. Mas, A. Ridruejo, J. J. Vilatela. NDT.net 21(8), Proceedings from 8th European Workshop on Structural Health Monitoring, 2016. URL source: NDT.net
  • Production and properties of composites based on carbon nanotube fibres” B. Mas & Vilatela J.J. 16th Eur.Conf. Compos. Mater. ECCM 2014, 2014.
  • Electric curing of nanocarbon/epoxy adhesives for composite repair” Monreal-Bernal, A., Mas, B., Fernández-Blázquez & Vilatela, J. J. 16th Eur. Conf. Compos. Mater. ECCM 2014, 2014.
  • Structure and properties of composites of carbon nanotube fibres” Vilatela, J. J. & Windle, A. H. ECCM 2012 – Compos. Venice Proc. 15th Eur. Conf. Compos. Mater., 2012.
  • Recent advances in carbon nanotube fibres” Vilatela, J. J. & Windle, A. H. International Symp. New Front.Fiber Mater. Sci. Conf. Proc., 2011.
  • MX2006PA13291 “Process for fabrication of plastic packaging materials with improved permeability to oxygen, water and carbon dioxide, using polymers and submicron particles made of carbon, nitrogen and/or silicon oxide”
  • MX2006PA13292 “Process for production of carbon submicron particles with tubular structure using ceramic and metal substrates”
  • EP2145043 “An enhancement of the structure and properties of carbon nanotube fibres and films”
  • 2016 “Young Investigator Award granted by the European Society for Composite Materials
  • 2015-2020 “Ramón y Cajal Fellowship from the Spanish Ministry of Economy”
  • 2011-2013 “Juan de la Cierva Fellowship from the Spanish Ministery of Science and Innovation (MICINN)”
  • 2005-2009 “PhD scholarship from the Mexican Science Council (CONACYT)”
  • 2004 “Research internship scholarship from the US government, RPI, US”